a2 United States Patent

Guntur et al.

US009223381B2

(10) Patent No.: US 9,223,381 B2
(45) Date of Patent: Dec. 29, 2015

(54) METHOD AND APPARATUS TO SAVE
POWER UPON RESUME IN MULTI-CORE
SYSTEM

(71) Applicant: Samsung Electronics Co., Ltd.,
Gyeonggi-do (KR)

(72) Inventors: Ravi Sankar Guntur, Bangalore (IN);
Nitish Ambastha, Bangalore (IN)

(73) Assignee: Samsung Electronics Co., Ltd.,
Yeongtong-gu, Suwon-si, Gyeonggi-do
(KR)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 298 days.

(21) Appl. No.: 13/975,615
(22) Filed: Aug. 26,2013

(65) Prior Publication Data
US 2014/0059372 Al Feb. 27,2014

(30) Foreign Application Priority Data

Aug. 24,2012 (IN) .o 3504/CHE/2012

(51) Int.CL
GOGF 1/32 (2006.01)

(52) US.CL
CPC ... GOGF 1/3234 (2013.01); GOGF 1/3287
(2013.01); Y02B 60/1282 (2013.01)

(58) Field of Classification Search
CPC ..o GOG6F 1/3234; GOG6F 1/3287
See application file for complete search history.

300

Computing Domain Tabie

Domain A ~301

Extemnal Interrupt sources

Key press event
Pawer Key press event

Domain B ~302

RTC alarm
PMIC event
DPRAM event

N

For Computational Domain A

SetFreq= Lowest OPP, Start CPU Freq govemor policy
Resume specific domains, don't enable non-boot CPUs

For Computational Domain B
SetFreq=Highest OPP, Start CPU Freq govemor policy
Resume System Devices, Enable non-boot CPUs

(56) References Cited
U.S. PATENT DOCUMENTS
5,812,860 A 9/1998 Horden et al.

7,155,617 B2 12/2006 Gary etal.
7,840,825 B2 112010 Altevogt et al.

2009/0089470 Al*  4/2009 Ven .......cccviviiiiinnnn 710/260
2011/0252251 Al* 10/2011 de Cesareetal. ... .. 713/320
2012/0159224 Al* 6/2012 Bondalapati etal. ......... 713/324

FOREIGN PATENT DOCUMENTS

WO 2011/127128 A1 10/2011
OTHER PUBLICATIONS

W. Lloyd Bircher & Lizy K. John, Analysis of Dynamic Power
Management on Multi-Core Processors, 2008, The University of
Texas at Austin.

* cited by examiner

Primary Examiner — Kim Huynh
Assistant Examiner — Vincent Chang
(74) Attorney, Agent, or Firm — Cha & Reiter, LLC

(57) ABSTRACT

A method is provided for resuming one or more cores of a
multi-core processor that is part of an electronic device, the
method comprising: grouping wakeup sources into a plurality
of computing domains; receiving an interrupt associated with
a wakeup source; identifying a first computing domain from
the plurality that the wakeup source is part of, mapping the
first computing domain to a first indication of one or more
states of a first core of the processor; configuring the first core
to enter the one or more states that are indicated by the first
indication; and resuming the first core after the first core is
configured.

20 Claims, 5 Drawing Sheets

Default State Table

Computation
Domain

A

]




U.S. Patent Dec. 29, 2015 Sheet 1 of 5 US 9,223,381 B2

Time out

event
/)

Time out
event Deﬁ%zfep ’

v

Sleep mode

Wakeup event

Low power
mode
event

FIG.1

Time out
event

Wakeup Sources

/ All Interrupt sources \_, Low power
mode
/ System Timer \

RTC Alarm
External Interrupt Sources Deep sleep

Sleep mode

Key Press Event
PMIC Interrupt mode
OneDRAM Interrupt

FI1G.2



U.S. Patent Dec. 29, 2015 Sheet 2 of 5 US 9,223,381 B2

300 303
! !
/ Computing Domain Table \ / Default State Table \
Domain A ~ 301
Ext Computation| core0 | Core 1
ernal Interrupt sources Domain ore ore
Key press event
Power Key press event 301~ A Co,P5 | CO,P2

3021 B Co,P3 C3

Domain B ~302 \ j

RTC alarm

PMIC event
DPRAM event

e e o i e —— i —— — o —— — — ————————— — — — — —

7 ~N

For Computational Domain A

SetFreq= Lowest OPP, Start CPU Freq governor policy
Resume specific domains, don't enable non-boot CPUs

For Computational Domain B

SetFreq=Highest OPP, Start CPU Freq governor policy
Resume System Devices, Enable non-boot CPUs




U.S. Patent Dec. 29, 2015 Sheet 3 of 5 US 9,223,381 B2

Default frequency (SLEEP FREQ) and 401
voltage is set for CPU

Save state and suspend all devices ~ 402
Take down all non-boot CPU and

suspend system devices 403

Wakeup sources are set ~ 404

Set CPUO to suspend or internally call 405

CPU_SUSPEND

400

FIG.4



U.S. Patent Dec. 29, 2015 Sheet 4 of 5 US 9,223,381 B2

Receives wakeup event ~ 501
CPU 0 wakeup ~ 502
1

Acquire computing domain L 503
Read default state table ~ 504
Set default state values ~ 505
Resume necessary devices ~ 506
Handle event ~ 507

. FIG.5



U.S. Patent Dec. 29, 2015 Sheet 5 of 5 US 9,223,381 B2

r— - - - - - - - - - - - = = = — = — m
| Computing Environment |
l |
| |
| Networking Devices |
| Control Unit ALU |
l |
l i |
l Processing Unit (PU) /O Devices 1
| o i . T _—_—_—_C -
M I
: ! Memory Storage | :
¥ X
S



US 9,223,381 B2

1
METHOD AND APPARATUS TO SAVE
POWER UPON RESUME IN MULTI-CORE
SYSTEM

CLAIM OF PRIORITY

This application claims priority under 35 U.S.C. §119(a)to
a Indian Patent Application filed in the Indian Patent Office on
Aug. 24, 2012 and assigned Serial No. 3504/CHE/2012, the
contents of which is incorporated herein by reference.

FIELD

The present disclosure relates to power management in
multi-core systems.

BACKGROUND

With the convergence of communication and entertain-
ment applications, mobile device manufacturers are chal-
lenged to reduce power consumption while delivering better
performance; in other words, do more for less. Power man-
agement is crucial in battery-powered systems because it
helps conserve power when the systems are inactive.

When a system is not in use, it is put into a “sleep state”
which is a low-power consuming state. In this “sleep state,”
the system is not performing any useful tasks for the user. As
an example, power may be conserved by switching off a
display when the system is inactive for some time.

Existing systems address the need for efficient power con-
sumption by defining various processor states called C-states
and P-states. C-states correspond to a processor either execut-
ing instructions or being in an idle state. P-states correspond
to sets of pairs of voltage and frequency states. Operating
systems deploy CPUIDLE and CPUFREQ subsystems to
conserve power. Based on workload, CPUFREQ subsystems
either lower or increase the voltage and frequency of each
core present in a system. In some situations, CPUFREQ sub-
systems can choose to apply different C-states for each core
present in a system, thus further reducing the system’s power
needs. Upon a wakeup by an interrupt, CPUFREQ sub-
systems may cause a system to transition into an appropriate
C-state (CO) with its cores being put in high voltage and
frequency states. Afterwards, based on current workload of
the system, the subsystems may lower the voltage and fre-
quency of the cores.

In battery powered handheld systems, often a majority of
interrupts and their applications could be serviced in low
voltage and frequency states to save power. In such systems,
the above technique may cause a processor core to go to a
higher P-state at first, and then come down to a lower P-state
that is more appropriate for the current workload of the sys-
tem. For example, on receiving wakeup events, a device may
come out of a “sleep state”, operating at a high performance
point, irrespective of the demand that is placed on the device.
Based on the demand, the device may later be put into an
optimal performance point. However, the transition from the
high performance point to the optimal performance point may
be inefficient in some instances.

Similarly, on receiving wakeup events, secondary cores of
the device may come out of a sleep state, after which the
secondary cores may be put into an optimal performance
point or sleep state based on the demand that is placed on the
device. Similarly, this transition may also be inefficient at
times. Accordingly, the need exists for new and more efficient
power management techniques.

10

15

20

25

30

35

40

45

50

55

60

65

2
SUMMARY

The present disclosure addresses this need. In one aspect, a
method is provided for resuming one or more cores of a
multi-core processor that is part of an electronic device, the
method comprising: grouping wakeup sources into a plurality
of computing domains; receiving an interrupt associated with
a wakeup source; identifying a first computing domain from
the plurality that the wakeup source is part of, mapping the
first computing domain to a first indication of one or more
states of a first core of the processor; configuring the first core
to enter the one or more states that are indicated by the first
indication; and resuming the first core after the first core is
configured.

In another aspect, an apparatus is provided comprising an
integrated circuit further comprising at least one processor,
the integrated circuit being configured to: group wakeup
sources into a plurality of computing domains; receive an
interrupt associated with a wakeup source; identify a first
computing domain from the plurality that the wakeup source
is part of; map the first computing domain to a first indication
of'one or more states of a first core of the processor; configure
the first core to enter the one or more states that are indicated
by the first indication; and resume the first core after the first
core is configured.

BRIEF DESCRIPTION OF THE DRAWINGS

The examples provided herein will be better understood
from the following description with reference to the draw-
ings, in which:

FIG. 1 is a state diagram showing different device power
states and transitions, according to aspects of the disclosure;

FIG. 2 is a diagram depicting various device sleep states
and corresponding wakeup sources, according to according to
aspects of the disclosure;

FIG. 3 is a diagram of a computational domain table and a
default state table, according to aspects of the disclosure;

FIG. 4is aflowchart of a process according to aspects of the
disclosure;

FIG. 5is aflowchart ofa process according to aspects of the
disclosure; and

FIG. 6 is a schematic diagram of a computing environment
according to aspects of the disclosure.

DETAILED DESCRIPTION

The examples provided herein are explained more fully
with reference to the drawings. Descriptions of well-known
components and processing techniques are omitted so as to
not unnecessarily obscure the examples herein. The examples
should not be construed as limiting the scope of the disclosure
in any way.

In some aspects, a method and system are provided that
identify a wakeup event and use the different cores onadevice
and their operating state intelligently to save power. Wakeup
events may be grouped into domains based on computing
needs. Each computing domain may be next mapped to one or
more of core IDs, P and C-states using a computing domain
table and/or a default state table. When an interrupt is gener-
ated in the device, the computing domain and default state
tables may be used to determine which cores are to be pow-
ered as well as the cores’ particular voltage and frequency
level.

Referring now to the drawings, and more particularly to
FIGS. 1 through 6, where similar reference characters denote



US 9,223,381 B2

3

corresponding features consistently throughout the figures,
there are shown some specific examples.

FIG. 1 is a state diagram of a battery powered device. The
battery powered device may be a mobile phone, a Personal
Digital Assistant (PDA), and/or any other suitable type of
device. FIG. 1 shows various power states of the device. In
this example, the device has several modes such as a normal
mode, a low power mode, a sleep mode, and a deep sleep
mode when not used. The device transitions to low the power
mode on a timeout event. The device comes back to normal
state on any wakeup event. In sleep mode, all the cores in the
device are powered-off. In deep sleep mode, only RAM will
be powered-on, but the CPU and other peripherals will be shut
down. When a wakeup event occurs in sleep mode, the device
moves to the normal mode. The number of different low
power states that are available to the device depends upon the
type of the device and on the type of low power options that
the device’s hardware can offer. For example, the device may
be put into sleep mode when the device is not used and then
brought back into normal mode when a key on the device is
pressed.

FIG. 2 depicts an example of device states and correspond-
ing wakeup sources, according to aspects of the disclosure.
Different wakeup sources are shown for each one of a plural-
ity of low-power states. In particular, FIG. 2 shows that the
wakeup sources for Deep Sleep Mode are a subset of the
wakeup sources for Sleep Mode and the wakeup sources for
Sleep Mode are a subset of the wakeup sources for Low
Power Mode. For example, the wakeup sources when the
device is in Deep Sleep mode are Real-time clock (RTC)
alarm, external interrupt sources, key press event, Power
Management Interrupt Controller (PMIC) which processes
the interrupt request handler and finds from which source the
interrupt is coming and modem interrupt such as an incoming
call.

FIG. 3 depicts an example of a computational domain table
and a default state table, according to aspects of the disclo-
sure. The figure shows a computing domain table 300 which
splits different wakeup events into separate domains as
Domain A 301 and Domain B 302, respectively. In some
implementations, the wakeup events may be grouped into
different domains based on computational power require-
ments associated with the events. A default state table 303
may be configured that maps each domain that is defined in
the domain table to core IDs and P-states associated with the
cores. In some implementations, the Domain A 301 in the
computing domain table 300 may group wake up events, such
as external interrupt sources, key press event and power key
press event. Domain B 302 may group wake up events, such
as RTC alarm, PMIC event and DPRAM event.

In some implementations, according to the default state
table 303, when any of the interrupts in the Domain A occurs,
Core 0 of the device is put into the CO operating state and the
PS5 processor performance state, while Core 1 of the device is
put into the CO operating state and the P2 processor state. In
that regard, the technique described herein sets the C-states
and P-states of CPUs when a particular wake up event has
occurred based on the type of that event. In some instances,
the P-states for the core 0 and core 1 may or may not differ
from one another due to design limitations of some chipsets.

Processor performance states (P-states) and processor
operating states (C-states) result from the capability of a
processor to switch between different supported operating
frequencies and voltages to modulate power consumption.
The Advanced Configuration and Power Interface (ACPI)
specification defines the CPU P-states power management
states. The number of P-states is processor specific. If con-

30

35

40

45

50

55

4

figured properly according to system workload, this feature
provides power savings. Higher P-state numbers represent
slower processor speeds. Power consumption is lower at
higher P-states. For example, a P3 state is higher than a P1
state. A processor in P3 state will run more slowly and use less
power than a processor running at P1 state. To operate at any
P-state, the processor must be in the CO operational state
where the processor is working and not idling. These states
are implementation-dependent, but PO is always the highest-
performance state, with P1 to Pn being successively lower
performance states, up to an implementation-specific limit of
n no greater than 16. PO max power and frequency, P1 less
than PO, voltage/frequency scaled, Pn less than P(n-1), volt-
age/frequency scaled. The ACPI specification also defines the
CPU C-states power management states. CPU operating
states (C-states) are the capability of an idle processor to turn
off unused components to save power. When a processor runs
in the CO state it is working. A processor running in any other
C-state is idle. Higher C-state numbers represent deeper CPU
sleep states. At higher C-states, more components shut down
to save power. Some components that are shut down include
stopping the processor clock and stopping interrupts. The
CPU power states C0O-C3 are defined as CO is the operating
state, C1 (often known as Halt) is a state where the processor
is not executing instructions, but can return to an executing
state essentially instantaneously. All ACPI-conpornant pro-
cessors must support this power state. Some processors, such
as the Pentium 4, also support an Enhanced C1 state (CIE or
Enhanced Halt State) for lower power consumption, C2 (of-
ten known as Stop-Clock) is a state where the processor
maintains all software-visible state, but may take longer to
wake up. This processor state is optional and C3 (often known
as Sleep) is a state where the processor does not need to keep
its cache coherent, but maintains other state. Some processors
have variations on the C3 state (Deep Sleep, Deeper Sleep,
etc.) that differ in how long it takes to wake the processor. This
processor state is optional.

In some implementations, the device may be configured in
such a way that in computational Domain A 301, the device
has the highest Operating Performance Point (OPP) of CPUO
with all other cores being enabled. In computational Domain
B 302, the device may have the lowest OPP of CPUO with
some of the other cores being disabled.

As noted, in some implementations, the device may be
configured to wake up from sleep mode when the device
receives certain wake up events. In some implementations,
the wake up events may be generated by external interrupt
sources, RTC alarm, key press event, PMIC event, DPRAM
event and so on. For example, the device may be configured to
wake up from sleep mode only when a RTC alarm event
occurs.

FIG. 4 is a flowchart of a method 400 according to aspects
of the disclosure. As illustrated, the method stores the CPU’s
current freq and the CPU is set to sleep frequency (SLEEP
FREQ) as default frequency (401). Also the method sets the
voltage for the CPU. Then, the method saves the states of one
or more devices and those devices are suspended afterwards
(402). Then, the method suspends Non-boot CPUs and sys-
tem devices (403). Then, the method sets wakeup sources
(404). Then, the method sets the master CPU to suspend or
internally calls CPU_suspend (405). The various actions in
method 400 may be performed in the order presented, in a
different order, or simultaneously. Further, in some imple-
mentations, some actions listed in FIG. 4 may be omitted.

FIG. 5 is a flowchart of a method 500 according to aspects
of'the disclosure. As illustrated, the method starts by receiv-
ing a new wakeup event (501). Then the method wakes up a



US 9,223,381 B2

5

master CPU (CPU 0-boot core) (502). The method then
acquires a computing domain to which the event belongs
(e.g., Domain A 301 or Domain B 302) by using the Com-
puting Domain Table 300 (503). Further, the method identi-
fies the default state for the acquired computing domain by
Default State Table 303 (504). Then the method brings the
cores of the processor identified in Default State Table 303
into the respective states for those cores that are identified in
the Default State Table 303 (505). The method next resumes
necessary cores for the event and other devices will remain in
suspend state (506). Finally the method handles the event
(507). The various actions in method 500 may be performed
in the order presented, in a different order or simultaneously.
Further, in some implementations, some actions listed in FIG.
5 may be omitted.

The additional power saved using the proposed method
may be computed as follows:

Energy=Ni*Nc*Pc*T

where,

Ni=number of times selected interrupt occurs

Nc=number of cores available in device
Pc=power consumed by each core running at Sleep freq (per-
formance) value
T=time taken by the governor to react to identify correct freq
or number of online CPUs.

FIG. 6 illustrates computing environment implementing
the techniques described herein according to aspects of the
disclosure. As depicted the computing environment 600 com-
prises at least one processing unit that is equipped with a
control unit 611 and an Arithmetic Logic Unit (ALU) 612, a
memory 640, a storage unit 650, plurality of networking
devices 620, and a plurality Input output (I/0) devices 630.
The processing unit 610 is responsible for processing the
instructions of the algorithm. The processing unit 610
receives commands from the control unit 611 in order to
perform its processing. Further, any logical and arithmetic
operations involved in the execution of the instructions are
computed with the help of the ALU 612.

The overall computing environment 600 can be composed
of multiple homogeneous and/or heterogeneous cores, mul-
tiple CPUs of different kinds, special media and other accel-
erators. The processing unit 610 is responsible for processing
the instructions of the algorithm. The processing unit 610
receives commands from the control unit 611 in order to
perform its processing. Further, any logical and arithmetic
operations involved in the execution of the instructions are
computed with the help of the ALU 612. Further, the plurality
of process units may be located on a single chip or over
multiple chips.

The algorithm comprising of instructions and codes
required for the implementation are stored in either the
memory unit 640 or the storage 650 or both. At the time of
execution, the instructions may be fetched from the corre-
sponding memory 640 and/or storage 650, and executed by
the processing unit 610.

In case of any hardware implementations various network-
ing devices 620 or external /O devices 630 may be connected
to the computing environment to support the implementation
through the networking unit and the /O device unit.

The implementations disclosed herein can be implemented
through at least one software program running on at least one
hardware device and performing network management func-
tions to control the elements. The elements shown in FIG. 6
include blocks which can be at least one of a hardware device,
or a combination of hardware device and software module.

15

20

25

35

40

45

50

55

60

65

6

The foregoing description of the specific examples will so
fully reveal the general nature of the examples herein that
others can, by applying current knowledge, readily modify
and/or adapt for various applications such specific examples
without departing from the generic concept. It is to be under-
stood that the phraseology or terminology employed herein is
for the purpose of description and not of limitation. There-
fore, those skilled in the art will recognize that the examples
herein can be practiced with modifications within the spirit
and scope of the embodiments as described herein.

The above-described embodiments of the present disclo-
sure can be implemented in hardware, firmware or via the
execution of software or computer code that can be stored in
a recording medium such as a CD ROM, a Digital Versatile
Disc (DVD), a magnetic tape, a RAM, a floppy disk, a hard
disk, or a magneto-optical disk or computer code downloaded
over a network originally stored on a remote recording
medium or a non-transitory machine readable medium and to
be stored on a local recording medium, so that the methods
described herein can be rendered via such software that is
stored on the recording medium using a general purpose
computer, or a special processor or in programmable or dedi-
cated hardware, such as an ASIC or FPGA. As would be
understood in the art, the computer, the processor, micropro-
cessor controller or the programmable hardware include
memory components, e.g., RAM, ROM, Flash, etc. that may
store or receive software or computer code that when
accessed and executed by the computer, processor or hard-
ware implement the processing methods described herein. In
addition, it would be recognized that when a general purpose
computer accesses code for implementing the processing
shown herein, the execution of the code transforms the gen-
eral purpose computer into a special purpose computer for
executing the processing shown herein. Although the above
examples are provided with respect to battery-powered sys-
tems, the techniques describe herein may be applied to non-
batter powered systems and/or any other suitable type of
system.

The invention claimed is:

1. A method for resuming one or more cores of a multi-core
processor that is part of an electronic device, the method
comprising:

grouping wakeup sources into a plurality of computing

domains;

receiving an interrupt associated with a wakeup source;

identifying a first computing domain from the plurality that

the wakeup source is part of;

mapping the first computing domain to a first indication of

one or more states of a first core of the processor;
configuring the first core to enter the one or more states that
are indicated by the first indication; and

resuming the first core after the first core is configured.

2. The method of claim 1, wherein the interrupt is received
when the device is in at least one of: a sleep mode, a deep sleep
mode, and a low power mode.

3. The method of claim 1, wherein the grouping comprises
creating a computing domain table for the plurality of com-
puting domains.

4. The method of claim 3, wherein the computing domain
table comprises a mapping of interrupts in the wakeup
sources to the plurality of computing domains.

5. The method of claim 3, wherein the first computing
domain is identified based on the computing domain table.

6. The method of claim 1, further comprising creating a
default state table that relates each one of the plurality of
computing domains with a different set of one or more states
of the first core.



US 9,223,381 B2

7

7. The method of claim 6, wherein the mapping is per-
formed based on the default state table.

8. The method of claim 6, wherein the default state table
maps the first computing domain to different P-states for
different cores of the processor.

9. The method of claim 6, wherein the default state table
maps the first computing domain to a combination of a P-state
and a C-state for the first core.

10. The method of claim 6, wherein:

the default state table maps the first computing domain to a

first state of the first core; and

the default state table maps a second computing domain of

the plurality to a second state of the first core that is
characterized by a higher power consumption than the
first state.

11. An apparatus, comprising:

an integrated circuit further comprising at least one pro-

cessor, the integrated circuit being configured to:

group wakeup sources into a plurality of computing

domains;

receive an interrupt associated with a wakeup source;

identify a first computing domain from the plurality that

the wakeup source is part of;

map the first computing domain to a first indication of one

or more states of a first core of the processor;
configure the first core to enter the one or more states that
are indicated by the first indication; and

resume the first core after the first core is configured.

12. The apparatus of claim 11, wherein the interrupt is
received when the apparatus is in at least one of: a sleep mode,
a deep sleep mode, and a low power mode.

10

15

20

8

13. The apparatus of claim 11, wherein the grouping com-
prises creating a computing domain table for the plurality of
computing domains.

14. The apparatus of claim 13, wherein the computing
domain table comprises a mapping of interrupts in the
wakeup sources to the plurality of computing domains.

15. The apparatus of claim 13, wherein the first computing
domain is identified based on the computing domain table.

16. The apparatus of claim 11, wherein the integrated cir-
cuit is further configured to create a default state table that
relates each one of the plurality of computing domains with a
different set of one or more states of the first core.

17. The apparatus of claim 16, wherein the mapping is
performed based on the default state table.

18. The apparatus of claim 16, wherein the default state
table maps the first computing domain to different P-states for
different cores of the processor.

19. The apparatus of claim 16, wherein the default state
table maps the first computing domain to a combination of a
P-state and a C-state for the first core.

20. The apparatus of claim 16, wherein:

the default state table maps the first computing domainto a
first state of the first core; and

the default state table maps a second computing domain of
the plurality to a second state of the first core that is
characterized by a higher power consumption than the
first state.



